4SC-202 plus Anti-PD1: Breaking PD1-refractoriness to increase efficacy of checkpoint inhibition in patients with advanced melanoma

René Bartz, PhD
05 March 2018
Conflict of interest statement

With reference to this presentation, I hereby declare that I do not conduct activities that would involve a conflict of interest with CME-accreditable training, but that in the past 2 (two) years I have been a paid employee of 4SC AG.
Checkpoint Inhibitors have revolutionized Cancer Therapy

- Checkpoint inhibitors (CIs) are the new paradigm for the treatment of cancer patients in many indications
- CIs overcome tumor-specific immune escape mechanisms

Immune escape
Evasion strategies by tumor cells; expression of cell surface PD-L1 molecules

Checkpoint blockade
Pharmacological intervention of PD-1/PD-L1 binding

Tumor Elimination
Inhibition of T-lymphocytes is abrogated; elimination of tumor cells
Despite successes: additional anti-cancer therapies in the immuno-oncology space required

- First approved in 2011 (ipilimumab; CTLA-4) in melanoma
 - Since then: mostly PD-1/ PD-L1 antibodies
- Quite dramatic responses in some patients
 - Increasing number of indications; some even as First-Line-Treatment
- High unmet medical need demands alternative/ additional treatment options
 - Low response rates in some cancers

<table>
<thead>
<tr>
<th>Indication</th>
<th>Response Rate [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-small cell lung cancer (NSCLC), squamous and non-squamous</td>
<td>15-20%</td>
</tr>
<tr>
<td>Small cell lung cancer (SCLC)</td>
<td>15%</td>
</tr>
<tr>
<td>Renal cell carcinoma</td>
<td>15-20%</td>
</tr>
<tr>
<td>Bladder cancer</td>
<td>25%</td>
</tr>
<tr>
<td>Gastric cancer</td>
<td>20%</td>
</tr>
<tr>
<td>Ovarian cancer</td>
<td>15%</td>
</tr>
<tr>
<td>Triple negative breast cancer (TNBC)</td>
<td>20%</td>
</tr>
<tr>
<td>Melanoma</td>
<td>40%</td>
</tr>
</tbody>
</table>

Adapted from: Curie Institute; Bryan, Carrier & Co.
Combining therapies to address the needs adequately

• Possible approaches:
 o Novel immuno-oncology targets
 o Combination therapies (chemotherapy, radiotherapy, other entities…)
 • Modulation of multiple pathways
 • Variable targeting (e.g. tumor microenvironment/ tumor/ immune cells)
 • Sequence of existing therapies

Explosion in combinatorial therapies
Why do some patients respond to CIs – and some not?

- Multiple factors have been shown to influence the likelihood of response to immune therapies:
 - Location, type and quantity of immune effector cells
 - Mutational burden
 - Neoantigen load and clonality
 - Expression of antigen presenting molecules and immune checkpoints
 - Composition of tumor microenvironment: 'Hot' vs. 'Cold' Tumors

Conversion from noninflamed to inflamed tumor by epigenetic intervention?

Rationale for Epigenetic Modulation

• Current evidence suggests that epigenetic mechanisms play an important part in immune evasion of tumor cells

• Changes in expression with immunological relevance
 o Neoantigen expression (e.g. ‘TINATS’)
 o MHC presentation machinery
 o Rejuvenating exhausted effector cells
 o Release of proinflammatory chemokines

• Clinical evaluation with Entinostat class I HDACi (ENCORE 601); combination with pembrolizumab
 o ORR 24% anti-PD(L)-1-naïve; 10% in patients that progressed under PD(L)-1

Can 4SC-202 induce epigenetic effects leading to modulation of immune parameters in tumors?
Enter 4SC-202

- Small molecule HDAC class I inhibitor (HDAC 1, 2 and 3)
- Orally available
- Phase I data in 24 patients ‘TOPAS’
 - study in patients with hematological malignancies
 - safe, well tolerated with anti-cancer activity
 - 20/24 [83.3%] of patients demonstrated an ORR, 18 patients a SD, 1 patient a PR, 1 patient experienced a CR
 [angioimmunoblastic T-cell lymphoma, 200 mg BID]
4SC-202 in preclinical mouse models

• Comparison of models with/ without functional immune system

CT26 mouse model

<table>
<thead>
<tr>
<th>Immune competent</th>
<th>Immune compromised</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>vehicle</td>
<td>vehicle</td>
</tr>
<tr>
<td>4SC-202</td>
<td>4SC-202</td>
</tr>
</tbody>
</table>

Anti-tumor activity observed with 4SC-202 only in syngenic mouse tumor model (murine colon carcinoma).

How does the tumor microenvironment compare +/- 4SC-202 treatment?
Increased influx of immune cells

- 4SC-202 stimulates infiltration of CD8\(^+\)/CD4\(^+\) effector cells into tumor
- Not due to increased proliferation of cells
4SC-202 changes expression of cytokines in tumor

- 4SC-202-mediated changes in gene expression
 - Increases expression of chemokines in TME
 - Decreases expression of pro-inflammatory cytokines in TME
 - Increases IFN-γ in TME

CT26 tumor: inflammatory genes

Ccl8: Chemokine (C-C motif) ligand 8
Ccl5: Chemokine (C-C motif) ligand 5
Cxcr6: C-X-C chemokine receptor type 6
Cxcr8: C-X-C chemokine receptor type 8
Irf4: Interferon regulatory factor 4
Stat4: Signal transducer and activator of transcription 4
Ifng: Interferon gamma
Enhanced expression of MHC

- 4SC-202 increases the expression of MHC molecules

4SC-202 mediates changes in tumor/ tumor microenvironment; does this result in a benefit when combined with checkpoint inhibitors?
4SC-202 synergizes with anti-PD-1 blockade

C38 model

Anti-tumor activity observed with 4SC-202 alone; synergistic effects in combination with anti-PD-1.

PD-1 blockade alone: 2 responding, 18 non-responding

C38: murine colon carcinoma (syngenic)
4SC-202 synergizes with anti-PD-1 blockade

Tumor growth control with 4SC-202 alone; combination of 4SC-202 with anti-PD-1 results in tumor regression.
Combination leads to increased median and overall survival

- In the C38 tumors combination of 4SC-202 and anti-PD-1 antibody resulted in up to 55% tumor-free animals

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Median (d)</th>
<th>OS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle</td>
<td>37</td>
<td>0</td>
</tr>
<tr>
<td>Anti-PD-1</td>
<td>41</td>
<td>10</td>
</tr>
<tr>
<td>4SC-202, 60 mg/kg</td>
<td>58</td>
<td>10</td>
</tr>
<tr>
<td>Combo with 60 BID</td>
<td>>70</td>
<td>55</td>
</tr>
</tbody>
</table>
Combination of 4SC-202 with PD-1 blockade results in sustained responses

Anti-tumor effects of combination treatment are long-lasting even upon drug removal.
4SC-202 as combination partner for other CIs

- Epigenetic modulation changes the tumor microenvironment
 - Increased infiltration of immune cells into tumor
 - Enhanced expression of MHC molecules
 - Induction of tumor associated antigen expression
 - Increases expression of chemokines like IFN-γ in TME
- Some 'stand-alone' anti-tumor effects by 4SC-202
- Pleiotropic immune-modulatory features; 4SC-202 as backbone combination partner for different checkpoint inhibitors

Combination of 4SC-202 and checkpoint inhibitor reduces tumor burden and increases survival in animal models. Can we translate the findings into the clinic?
Translation into the clinic: SENSITIZE

- Phase Ib single arm study in patients with unresectable stage III or stage IV cutaneous melanoma
- Patients must be primary refractory or non-responding to prior anti-PD-1 monotherapy
- 3 dose cohorts [100, 200, 2 x 200 mg 4SC-202 + Pembrolizumab 2 mg/kg q3w]

<table>
<thead>
<tr>
<th>Dose finding</th>
<th>Expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=6-10 per cohort</td>
<td>4SC-202</td>
</tr>
</tbody>
</table>

- **4SC-202**
 - 100 mg OD
 - 200 mg OD
 - 200 mg BID

- **Pembrolizumab**

- **Recommended Phase II dose**

OD: once a day; BID: bis in die, twice a day
SENSITIZE Study Objectives

• Primary
 o The primary objective of the study is to determine safety and tolerability of combination treatment with 4SC-202 and Pembrolizumab
 o AEs, lab tests, vital signs, ECG, ECOG PS, physical examination, concomitant medication

• Secondary
 o Examine preliminary efficacy of combination treatment with 4SC-202 and Pembrolizumab
 o Determine
 • Non-tolerated dose (NTD)
 • Maximum tolerated dose (MTD)
 • Recommended phase 2 dose (RPTD)
 o Characterize pharmacokinetics (PK) of 4SC-202
SENSITIZE dosing scheme and exploratory objectives

• Exploratory Endpoint Biomarker assessment
 o Gene expression tumor and blood
 o IHC Analysis (tumor; skin biopsies)
 o Exosome collection and analysis

• PK/ PD sampling
 o PK/PD relationship analysis planned for some of the patients
SENSITIZE is currently recruiting

- 6 cancer centers in Germany
- PI: Dirk Schadendorf, Essen
Acknowledgements

Clinical Development
Astrid Ammendola
René Bartz
Eunice Braz
Susanne Danhauser-Riedl
Frank Hermann
Martin Orlovius
Stefano Pegoraro
Philip Reimann
Susanne Schwertler
Nadine Uebler

Translational Pharmacology
Anne-Catherine Bretz
Svetlana Hamm
Ulrike Parnitzke

CMC/ Regulatory
Sonja Bonengel
Renate Buhrdorf
Rolf Krauss
Adrian Messingschlager
Susanne Mirold-Mei
Wael Saeb
Brita Schulze
Silvia Stingele
Claudia Wilfer