Phase Ib cohort 1 data of class I HDAC inhibitor 4SC-202 (domatinostat) in combination with pembrolizumab in advanced cutaneous melanoma patients refractory or non-responding to prior anti-PD1 therapy.
Conflict of interest statement

With reference to this presentation, I hereby declare that I do not conduct activities that would involve a conflict of interest with CME-accreditable training, but that in the past 2 (two) years I have been a paid employee of 4SC AG.
Objectives

• Provide preclinical rationale for combination of selective class I HDAC inhibitor domatinostat with immune checkpoint inhibitors in advanced cutaneous melanoma patients and other skin cancers
• Current status clinical trials
 o SENSITIZE
• Planned studies and outlook
The problem…

- Multiple factors have been shown to influence the likelihood of response to immune therapies:
 - Mutational burden
 - Neoantigen load and clonality
 - Expression of antigen presenting molecules and immune checkpoints
 - Composition of tumor microenvironment: inflamed vs. non-inflamed tumors
Conversion from non-inflamed to inflamed tumor by epigenetic intervention?

• Domatinostat (4SC-202); small molecule HDAC class 1 inhibitor (HDAC 1,2 and 3)

• Phase I data in 24 patients ‘TOPAS’*
 o Hematological malignancies; heavily pretreated
 o safe, well tolerated with anti-cancer activity [monotherapy]
 o 20/24 of patients demonstrated an ORR, 18 patients a SD, 1 patient a PR, 1 patient experienced a CR [angioimmunoblastic T-cell lymphoma, 200 mg BID]

• HDAC inhibitors show pleiotropic effects
 o Modulation of tumor cells
 o Modulation of immune cells
 • Modulation of tumor microenvironment

*Von Tresckow et al., 2018

Domatinostat – versatile immune modulation capabilities

Domatinostat is expected to critically contribute to an effective and/or deeper response in Immuno-Oncology combination approaches on multiple levels.
Domatinostat in preclinical mouse models leads to changes in the tumor microenvironment

- Comparison of models with/without functional immune system

CT26 mouse model

<table>
<thead>
<tr>
<th>Immune competent</th>
<th>Immune compromised</th>
</tr>
</thead>
<tbody>
<tr>
<td>vehicle</td>
<td>vehicle</td>
</tr>
<tr>
<td>4SC-202</td>
<td>4SC-202</td>
</tr>
</tbody>
</table>

Estimated tumor volume [mm3] vs. Time [days]

- Anti-tumor activity observed with 4SC-202 only in syngenic mouse tumor model (murine colon carcinoma)
Domatinostat induced immune-modulation in tumors

- Changes on cellular and protein level
 - Increased infiltration of CD8+ T-Cells
 - Upregulation of MHC I molecules

CT26 cell line, MHC I

CT26 tumor, IHC: CD3/CD8+

- vehicle
- domatinostat

CT26 tumor, CD8+ T cells

% of tumor

% in blood

Vehicle
Domatinostat

Isotype ctrl.
Domatinostat induces genes of PD-1 response signature

Does Domatinostat regulate genes involved in PD-1 blockade response?

➔ Analyze immune-related gene expression signature (Ayers M et al JCI 2017)
 - Baseline tumor samples ➔ signature correlates with clinical benefit of PD-1 blockade (Pembrolizumab)

![Heatmap of gene expression](image)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ccl5</td>
<td>chemokine (C-C motif) ligand 5</td>
</tr>
<tr>
<td>Cd2</td>
<td>CD2 antigen</td>
</tr>
<tr>
<td>Cd3d</td>
<td>CD3 antigen, delta polypeptide</td>
</tr>
<tr>
<td>Cd3e</td>
<td>CD3 antigen, epsilon polypeptide</td>
</tr>
<tr>
<td>Cita</td>
<td>class II transactivator</td>
</tr>
<tr>
<td>Cxcl10</td>
<td>chemokine (C-X-C motif) ligand 10</td>
</tr>
<tr>
<td>Cxcl13</td>
<td>chemokine (C-X-C motif) ligand 13</td>
</tr>
<tr>
<td>Cxcl9</td>
<td>chemokine (C-X-C motif) ligand 9</td>
</tr>
<tr>
<td>Cxcr6</td>
<td>chemokine (C-X-C motif) receptor 6</td>
</tr>
<tr>
<td>Gzmc</td>
<td>granzyme C</td>
</tr>
<tr>
<td>Gzmk</td>
<td>granzyme K</td>
</tr>
<tr>
<td>H2-Ea-ps</td>
<td>histocompatibility 2, class II antigen E alpha, pseudogene</td>
</tr>
<tr>
<td>H2-T23</td>
<td>histocompatibility 2, T region locus 23</td>
</tr>
<tr>
<td>Ido1</td>
<td>indoleamine 2,3-dioxygenase 1</td>
</tr>
<tr>
<td>Ifng</td>
<td>interferon gamma</td>
</tr>
<tr>
<td>Ii2rg</td>
<td>interleukin 2 receptor, gamma chain</td>
</tr>
<tr>
<td>Lag3</td>
<td>lymphocyte-activation gene 3</td>
</tr>
<tr>
<td>Nkg7</td>
<td>natural killer cell group 7 sequence</td>
</tr>
<tr>
<td>Stat1</td>
<td>signal transducer and activator of transcription 1</td>
</tr>
<tr>
<td>Tgap</td>
<td>T cell activation Rho GTPase activating protein</td>
</tr>
</tbody>
</table>

Score (median log2 TPM)

unpaired t-test, two-tailed
P value = 0.0002
Combination therapies with ICI results in increased survival (in mouse models)

- Some single agent activity with domatinostat; enhanced in combination
- Key characteristics of CT26 and C38 tumor models
 - Immunologically competent and therefore serve as regular tumor models in I-O
 - PD(L)-1 monotherapy show modest anti-tumor activity (C38 > CT26)
 → best reflect non-responsive clinical situation
Translation of findings into the clinic: SENSITIZE

- Phase Ib single arm study in patients with unresectable stage III or stage IV cutaneous melanoma
- Patients must be primary refractory or non-responding to anti-PD-1 monotherapy
- Primary objective: safety and tolerability
 - 6 cancer centers in Germany
 - 1 center in Naples
 - PI: Dirk Schadendorf, Essen

Dosing scheme for dose finding part

- domatinostat
 - Days 1-14
 - Treatment pause
 - Days 15-21
 - Cycle 1
 - Cycle 2 and 3
 - Days 1-14
 - Days 15-21
 - Cycle 4
 - Days 1-14
 - Days 15-21
 - Cycle x

- biopsy sample for biomarker analysis
- administration of pembrolizumab

Extensive biomarker program associated with the study
Current status SENSITIZE

• Cohort 1 (100 mg) completed (10 patients)
 o No safety concerns; safety review committee cleared for cohort 2 [200 mg]
 o Patients for cohort 2 now enrolled
 • DLT observation period
 o Anticipated opening of cohort 3 early next year

• Exploratory biomarker analysis
 o PK/PD analysis
 o IHC Analysis tumor
 • Immune cell markers
 • PD assessment
 o Gene expression blood and tumor
Current Clinical Development Strategy Domatinostat

- Combination with checkpoint inhibitors (PD-1/ PD-L1) in different indications
- Domatinostat as potential combination partner with different checkpoint inhibitors in multiple indications

- **Phase Ib/II SENSITIZE study (4SC-sponsored)**
 - domatinostat + pembrolizumab (anti-PD-1)
 - 30-40 anti-PD-1 refractory/ non responding melanoma patients
 - Expansion cohort other melanoma/ skin cancer

- **Phase Ib/II EMERGE study (IST, RMH)**
 - domatinostat + avelumab (anti-PD-L1)
 - ~70 microsatellite-stable gastrointestinal cancer patients
 - Study start: December 2018
Current Clinical Development Strategy Domatinostat

- Combination with checkpoint inhibitors (PD-1/ PD-L1) in different indications
- Domatinostat as potential combination partner with different checkpoint inhibitors in multiple indications
- Goal for 2019: Initiation of single-arm Phase II Merkel Cell Carcinoma study

Phase Ib/II SENSITIZE study (4SC-sponsored)
- Domatinostat + pembrolizumab (anti-PD-1)
- ~70 microsatellite-stable gastrointestinal cancer patients
- Study start: December 2018

Phase Ib/II EMERGE study (IST, RMH)
- Domatinostat + avelumab (anti-PD-L1)
- ~70 microsatellite-stable gastrointestinal cancer patients
- Study start: December 2018

Phase II MCC study
- Domatinostat + anti-PD(L)-1 antibody
- advanced MCC patients
- Europe/ USA/ Australia
- FPI: H2/2019
Rationale for use of domatinostat in Merkel Cell Carcinoma

• Merkel Cell Carcinoma
 o Rare but highly aggressive form of skin cancer
 o Response rates ~ 60% after PD-1/ PD-L1 therapy
 o Patients who fail therapy do not have many treatment options left -> combination with domatinostat

• Synergistic approach derived from current clinical studies
 o Proof of concept data in skin cancer, combination of check point inhibitor and domatinostat (SENSITIZE)
 o Safety data combination avelumab and domatinostat (EMERGE)

Becker et al., 2017
The future: potential triple combination approaches

- A triple combination of domatinostat with anti-PD1 and anti-LAG3 antibody could increase the patient benefit by supporting T cell activation and function
 - Only triple combination shows additional effects
- Clinical translation in patients who do not respond to PD-1 is currently under discussion

Table: Mel Prior 10 (n = 48)

<table>
<thead>
<tr>
<th>LAG-3 expression</th>
<th>n</th>
<th>n (%)</th>
<th>ORR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 1%</td>
<td>25</td>
<td>5 (20)</td>
<td>6.9</td>
<td>1.8 - 24.6</td>
</tr>
<tr>
<td>< 1%</td>
<td>14</td>
<td>1 (7.1)</td>
<td>0.2</td>
<td>0.01 - 5.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PD-L1 expression</th>
<th>n</th>
<th>n (%)</th>
<th>ORR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 1%</td>
<td>16</td>
<td>2 (13)</td>
<td>1.6</td>
<td>0.4 - 7.1</td>
</tr>
<tr>
<td>< 1%</td>
<td>19</td>
<td>4 (21)</td>
<td>0.4</td>
<td>0.1 - 2.6</td>
</tr>
</tbody>
</table>

Graph: C38 triple combination (mouse model)

- Vehicle
- anti-LAG3
- domatinostat
- anti-PD-1
- anti-PD-1 + anti-LAG3
- domatinostat + anti-LAG3
- domatinostat + anti-PD-1
- domatinostat + anti-PD-1 + anti-LAG3

Ascierto et al., 2017, ASCO
Current Clinical Development Strategy Domatinostat

- Combination with checkpoint inhibitors (PD-1/ PD-L1) in different indications
- Domatinostat as potential combination partner with different checkpoint inhibitors in multiple indications
- Goal for 2019: Initiation of single-arm Phase II Merkel Cell Carcinoma study

Phase Ib/II SENSITIZE study (4SC-sponsored)
- Domatinostat + pembrolizumab (anti-PD-1)
- 30-40 anti-PD-1 refractory/ non responding melanoma patients

Phase Ib/II EMERGE study (IST, RMH)
- Domatinostat + avelumab (anti-PD-L1)
- ~70 microsatellite-stable gastrointestinal cancer patients
- Study start: December 2018

Phase II MCC study
- Domatinostat + anti-PD(L)-1 antibody
- Advanced MCC patients
- Europe/ USA/ Australia
- FPI: H2/2019

Phase II/III Combination Concepts
- Domatinostat + anti-PD(L)-1 (+ alternative/ additional combo partner)
- Anti-PD(L)-1 naïve and –experienced
- Advanced solid tumor patients
Conclusions/ outlook

• Good preclinical rationale for class I specific HDACi domatinostat as combination partner with I/O approaches
 o Activity in preclinical animal models; single agent and in combination

• Versatile approach by modulating multiple aspects within cancer/ immunity cycle
 o Modulation of tumor cells (e.g. MHC upregulation; neoantigen presentation)
 o Modulation of immune cells and tumor microenvironment

• Current focus in clinical development melanoma

• Rationale for Merkel Cell Carcinoma

• Combination partner for other (immune modulatory) agents
 o TLRs, vaccines etc.
Acknowledgements

Clinical Development
Astrid Ammendola
René Bartz
Eunice Braz
Susanne Danhauser-Riedl
Frank Hermann
Dino Kocijancic
Martin Orlovius
Stefano Pegoraro
Philip Reimann
Susanne Schwertler
Nadine Ueblerr

CMC/ Regulatory
Sonja Bonengel
Renate Buhrdorf
Rolf Krauss
Adrian Messingschlager
Susanne Mirol-Mei
Wael Saeb
Brita Schulze
Silvia Stingele
Claudia Wilfer

Translational Pharmacology
Anne-Catherine Bretz
Svetlana Hamm
Ulrike Parnitzke

Investigators, collaboration partners, patients, and their families.

The EMTherapy project is conducted in the framework of the European Eurostars program and has received funding from the Federal Ministry of Education and Research.